

 Navigation

 	
 index

 	
 next |

 	climate 0.2.0 documentation

Contents

	Prompt Chains
	Forking Prompts

	REPL Interface
	Creating a REPL

	Prompting for Data within a REPL

	Loading Commands from Command Files

	Input Filters

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2012, Damon Oehlman <damon.oehlman@sidelab.com>.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	climate 0.2.0 documentation

Prompt Chains

Climate is designed around a chainable interface that allows you to design complicated interactions. The concept of a prompt chain, however, does not refer to the chainability of the functions though.

A prompt chain is way of programmatically defining a question / response sequence.

To be completed

Forking Prompts

To be completed

 Copyright 2012, Damon Oehlman <damon.oehlman@sidelab.com>.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	climate 0.2.0 documentation

REPL Interface

Node’s repl [http://nodejs.org/docs/latest/api/repl.html] is great and offers a lot of great functionality, that said it does have some limitations. Depending on the type of application that you are writing, you may find the REPL implemented in climate a better fit.

Creating a REPL

Creating a REPL with climate is really simple. The example below show’s a trivial example:

var climate = require('climate');

climate
 .repl('say hi>')
 .command('hi', function(input) {
 var message;

 if (! input) {
 message = 'Hello, my name is Bob';
 }
 else if (input.toLowerCase() == 'bob') {
 message = 'You remembered my name, awesome!';
 }
 else {
 message = 'My name isn\'t ' + input + ', it\'s Bob';
 }

 climate.out(message + '\n');
 });

This example simply displays a prompt say hi which responds with varying results when you enter “hi”, “hi Bob” or “hi something else”. Currently the REPL is case sensitive with commands so “HI Bob” will not work.

Prompting for Data within a REPL

Within Climate it’s possible to create sub-instances which divert from the current prompt chain. This is particularly useful when using REPL, as a REPL is essentially a non-incrementing prompt chain.

Consider the following example:

var climate = require('..');

climate
 .repl('say hi>')
 .command('hi', function(input) {
 var message;

 if (! input) {
 message = 'Hello, my name is Bob';
 climate.fork()
 .prompt('What\'s your name?')
 .receive('*', function(name) {
 climate.out('Hey there ' + name + '!!\n');
 });
 }
 else if (input.toLowerCase() == 'bob') {
 message = 'You remembered my name, awesome!';
 }
 else {
 message = 'My name isn\'t ' + input + ', it\'s Bob';
 }

 climate.out(message + '\n');
 });

When the repl receives the text hi, it prompts for additional information. It does this by forking a new prompt. This fork creates a new prompt chain and pauses the currently executing chain. Once the new fork has been completed / resolved, the previously active chain is resumed and interaction continues with that chain.

Loading Commands from Command Files

While it’s simple enough to wire up a few commands as shown in the previous examples, when it comes to writing more complicated command line applications with a wide variety of commands then it definitely better to provide a little more structure to your application.

For this we can use the loadActions method of the repl:

var climate = require('..');
var path = require('path');

climate
 .repl('testrepl>')
 .loadActions(path.resolve(__dirname, 'actions'));

You can see here that no actual command logic in the file above, but rather it is implemented in separate command (or action) files stored in the referenced actions directory. An example of one of those files is shown below:

module.exports = function(input) {
 console.log('And now I\'m sliding... wheeee :)');
};

Using this technique provides some structure to your application which will generally make it easier for people to contribute to and extend your work.

 Copyright 2012, Damon Oehlman <damon.oehlman@sidelab.com>.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	climate 0.2.0 documentation

Input Filters

To be completed

 Copyright 2012, Damon Oehlman <damon.oehlman@sidelab.com>.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	climate 0.2.0 documentation

Index

 Copyright 2012, Damon Oehlman <damon.oehlman@sidelab.com>.
 Created using Sphinx 1.2.2.

 design.html

 Navigation

 		
 index

 		
 previous |

 		climate 0.2.0 documentation »

Design Goals

		Should work with streams other than process.stdin

		Should expect only the stdin stream, not necessarily a tty (but adapt well for a tty)

		Should be able to pipe and redirect stdin using both | and <

		You choose to color your world, not me

 © Copyright 2012, Damon Oehlman <damon.oehlman@sidelab.com>.
 Created using Sphinx 1.2.2.

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment.png

search.html

 Navigation

 		
 index

 		climate 0.2.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Damon Oehlman <damon.oehlman@sidelab.com>.
 Created using Sphinx 1.2.2.

_static/up.png

_static/comment-close.png

getting-started.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		climate 0.2.0 documentation »

Getting Started

This guide will walk you through the process of creating a simple interactive command line script using climate.

Installation

First, you will have to install the climate package into the package you are building. If you are using npm [http://npmjs.org/] then this is done very simply:

npm install climate

Once done, you will be able to create a script in your project that makes use of the climate library. Simply require the library in as you would any other node module:

var climate = require('climate');

Prompting for Data

If you are writing an interactive console script or application, then it’s likely you will be asking your users for data at some point in time. In climate this is done using the prompt function, e.g.:

var climate = require('../');

climate.prompt('How are you?');

Running this example, would simply display the prompt “How are you?”, wait for your response (a single line entry, ending with a carriage return) and then exit. Not particularly useful, but it’s a start.

Receiving Responses

To do something with a response returned from a user, you simply start adding receive handlers:

var climate = require('../../');

climate.prompt('How are you?');
climate.receive('well', function() {
 climate.out('Great to see you are well\n');
});

Additionally, because climate uses eve [http://dmitry.baranovskiy.com/eve/] eventing under the hood, simple wildcard matching is also supported:

var climate = require('climate');

climate.prompt('How are you?');
climate.receive('*', function(input) {
 climate.out('I see you are ' + input + '\n');
});

Using Fallback Response Handlers

While you can use wildcard response handlers to deal with unexpected response conditions, fallback response handlers are a more effective way to do this:

var climate = require('../');

climate.prompt('How are you?');

climate.receive('well', function() {
 climate.out('Great to see you are well\n');
});

climate.fallback(function(input) {
 climate.out('Not well? I guess ' + input + ' is ok...\n');
});

So in the example above, if you respond with “well” then receive the response for that specific condition. Any other response will receive the fallback response.

These three concepts of prompting, handling expected responses and using fallback handlers cover the core functionality of climate.

 © Copyright 2012, Damon Oehlman <damon.oehlman@sidelab.com>.
 Created using Sphinx 1.2.2.

_static/minus.png

_static/up-pressed.png

_static/down.png

_static/file.png

_static/down-pressed.png

_static/plus.png

